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Abstract-New theories are presented for the A-axis growth rate of ice crystals in flowing water or saline 
solutions with a high degree of subcooling. An existing theory, based on laminar boundary-layer flow over 
the front stagnation point of the growing crystal is believed to be unsatisfactory because the assumptions of 
first-order boundary-layer theory are inadmissible at the low crystal tip Reynolds number (z 3 x 10m3) 
encountered. 

Two models have been developed, one based on an analysis for creeping flow over the crystal tip, the 
other on conduction of heat along the growing crystal, this heat then being removed by forced convection 
from the relatively large flat faces of the crystal. These models give much closer agreement with the 
experimental results for A-axis growth in pure water. 

When modified to allow for salt diffusion from the ice tip in creeping flow, both models also give 
improved estimates of growth rates in saline solutions although the improvement is not so pronounced as 

for growth in pure water. 

NOMENCLATURE 

A-axis crystal growth rate [cm/s]; 
main stream centre line velocity [cm/s]; 
melting point of water [K]; 

bulk temperature of liquid [K]; 
temperature at crystal interface [K]; 
sub-cooling below water freezing point [K]; 

sub-cooling below main stream freezing 
point [K]; 

mass fraction of salt in main stream; 
mass fraction of salt at the crystal interface; 

freezing point depression at concentration 

W, [Kl; 
density of brine [kg/m3]; 
density of ice [kg/m3]; 
thermal diffusivity of brine [m’/s]; 

mass diffusivity of brine-[m’/s] ; 
kinematic viscosity of brine [m’/s]; ’ 
radius of curvature of crystal tip [m] ; 
crystal tip radius for maximum growth [ml; 
latent heat of ice [J/kg] ; 
specific heat of ice [J/kg K]; 
interfacial energy [mJ/m’]; 
Prandtl number of brine; 

/ 

t ) 
= T , Reynolds number at crystal tip; 

Schmidt number of brine; 
dimensionless temperature gradient at crystal 
surface with no mass transfer; 
dimensionless concentration gradient at 
crystal surface with no mass transfer; 

a,.. &, (5,. momentum, thermal and diffusion film 
thickness for laminar boundary-layer model 

[ml; 
ki, k,, thermal conductivity of ice and brine 

[W/m2 K]. 

1. INTRODUCTION 

IN THE desalination of sea or brackish water by 
freezing, the size distribution and shape of the ice 
crystals growing in the turbulent brine solution are 

determined by their local environment and surface 
kinetics. A thorough understanding of the mechanism 

ofgrowth in brine is essential for improving the freezing 
process. 

The literature on ice crystal nucleation and growth 
has been reviewed by Deans [l]. Ice crystals form as 

thin platelets with a fast growing A-axis in the plane of 
the platelet and a slow growing C-axis at right angles 
to it. For the low temperature differences between ice 

and brine used in practice, A-axis growth rates have 
been measured with the ice crystal growing in a flowing 
stream of brine by Bukina [2], Farrar and Hamilton 

[3] and Fernandez [4]. The results obtained indicate 
that the A-axis growth rate is heat transfer controlled. 
Fernandez [4], working under Barduhn, applied 

laminar boundary-layer theory, for flow round the front 
stagnation point of the crystal, to predict the A-axis 
growth rate but used the interfacial tension y between 

ice and brine as an effective fitting factor to force agree- 
ment between theory and experiment. In later papers, 
Barduhn’s group elaborated the theory to allow for 

diffusion of salt away from the growing crystal [5] but 
this theory was inadequate to explain quantitatively the 
effect of salt. In addition, it appeared that the assump- 

tions inherent in the boundary-layer theory were not 
reasonable when applied to a flow of such low Reynolds 
number. 

An experimental and theoretical study was thus 
carried out by Deans [l]. An outline of the experi- 
mental method and results for both A-axis and C-axis 
growth has been given by Simpson ef al. [6]. The main 
purpose of this paper is to present a theory for A-axis 
growth which is believed to be superior to that based 
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on stagnation tlow boundary-layer theory and for this 
reason attention is concentrated on measurements of 
the A-axis growth in brine and water for temperature 

differences in the range O.L-i,OK. 

2. EXPERIMENTAL APPROACH 

A drawing of the experimental equipment is shown 
in Fig. 1 and full details have been provided by Deans 
[l] and by Simpson et trl. [6]. The rig consisted 

Test 
chowiel~ / / , rThermistor 

Thegrowing crystal was observed and photographed 

through twin periscopes made from evacuated glass 
tubing sealed with optical glass. The /l-axis growth 
rates were obtained from the position of the crystal 

tip at various times, the position being recorded by a 
low power microscope and a reflex camera positioned 
at the top of the viewing periscope and readings being 
taken in brine concentration CM per cent for sub- 
toolings between 0.1 and 1.0 K at flow velocities of 

w_Electricol 

FIG. 1. Temperature control bath and test channel. 

FIG. 2. Ice crystal growth rates in water. 

essentially of a small flow channel, 15 mm square in 
section, machined from a solid block of perspex, with 
the top and bottom walls of the channel formed from 
sheet copper bonded to the perspex. Water or brine 
was circulated round the channel by a variable speed 
gear pump at four velocities in the range 5cm/s to 
23 cm/s. The brine in the flow circuit was maintained 
within +O+XJl K at a temperature between 0 and - 6°C 
by immersing it in a constant temperature control bath. 
The ice crystal was nucleated by a thermo-electric 
cooling unit, from the end of a 60 mm long thin walled 
glass capillary tube filled with water or brine and 
arranged so that crystal growth occurred into the 
flowing stream. 

5 and 125cmjs for both water and brine and at flow 
velocities of 16 and 23 cm/s for water only. 

3. EXPERIMENTAL RESULTS 

The A-axis growth rate G, for ice in pure water at the 
condition specified above, is shown in Fig. 2. Figure 
2(b) shows that u K (AT where n N 1.45 at all four 
stream velocities, although, as this figure also shows, the 
growth velocity at zero flow velocity indicates an index 
n = 3 and a growth rate an order of magnitude lower 
than for the flowing streams. Figure 2(a) shows that u 
varies with stream velocity V according to the relation 
LI VI If”* and when v/V”~ is plotted against AT the 
data reduce to a single line which can be represented to 
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FIG. 3. Ice crystal growth rates in brine. 

within f 5 per cent by the equation 

v = 0.038V”‘AT3’*. (1) 

It can also be seen from Fig. 2(c) that the current data 
show good agreement with the empirical correlations of 

both Poisot [7] and Vlahakis [8]. 
The more complex data, for ice crystal growth in 

flowing brine, are shown in Fig. 3, in which crystal 

growth rate u is plotted against AT for brine velocities 
of 5 and 125 cm/s at mainstream concentration W, 
between 0 and 6 per cent by weight. For clarity, 
individual test points are shown for one salt concentra- 
tion only. At the higher range of AT a relationship 
u CC AT” is obtained for brine as well as for water but 
at salt concentrations greater than 1 per cent the 
growth rate decreases more rapidly with decrease of 
sub-cooling. However, our attention is directed to the 
data for higher values of AT and lower brine concen- 
tration where o cc AT’. 

With increasing salt concentration the growth rate 
passes through amaximum, as shown in Fig. 4 for a sub- 
cooling of @6K, which occurs at concentrations of 
0.3 per cent at 12.5 cm/s and 0.6 per cent at 5 cm/s the 
maximum growth velocities being about 25 and 50 per 
cent greater than the corresponding pure water growth 
velocities. With further increase of salt concentration 

the growth rate decreases, falling to about 25 per cent 
of the pure water value with a 6 per cent brine. 

o- 
9- 

6- 

7 

6 

yj 
4- 

3- 

2- 

I- 

O 

Sub cooling 0.6K 

O-Mainstream velocity 
125 cm/s 

x=Mainstr.eam velocity 5 cm/s 

I I I I I I 
IX 2% 3% 4% 5% 6% 

Concentration, % wt 

FIG. 4. Variation of ice crystal growth rate with 
concentration. 

The existence of maxima in growth rates with salt 
concentration has been observed by other investigators, 
Tamman and Buchner [9], Lindenmeyer [ll] and 
Farrar and Hamilton [3]. However, the phenomenon 
remains largely unexplained. 
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4. THEORY OF THE 4-AXIS <;ROWTfI 

4.1 Lu~inar ~olind~~r~l-~~~er ,frow 

The results in Figs. 2 and 3 for A-axis growth show 
that 

(1 = A, l”‘2AT (2) 

where n increases from 1.5 for pure water to 2.2 for the 

5 per cent solution and where the constant A, decreases 
as the salt concentration increases. The dependence 

of the crystal growth rate L) on V’!‘, where V is the 

stream velocity, suggests that the growth rate might be 
determined by the heat and mass transfer through the 
laminar boundary layer surrounding the front of the 
crystal. This was the approach followed by Barduhn 

rt ul. Using standard solutions for the laminar 
boundary-layer flow over the front stagnation point of a 

cylinder, Bird, Stewart and Lightfoot [IO] and assum- 

ing the thicknesses of the thermal and mass diffusion 

boundary layers to be small compared with the 
momentum boundary layer, so that the velocity 
gradient can be taken to be linear in these diffusion 
layers, Fernandez [5] showed that the crystal growth 
rate was given by, 

where W, is the mass concentration of salt in the main 

stream and A?; = T,-r, -2.W= is the sub-cooling 
below the melting point of the main stream, due allow- 

ance being made in the p/R term for the curvature of 
the crystal. However, the radius of curvature R of the 
crystal was unknown although equation (3) implies 

In common with other investigators of crystal growth, 

Fernandez assumed that the crystal adjusted itself so 
that the crystal radius R became the value R0 at which 
maximum growth rate occurred. Assuming then 

and 

(4) 

Equation (5) implies equation (2) with A, decreasing 
as the salt concentration increases, and qualitative 
agreement exists between theory and experiment. 

However, examination of equation (5) shows that the 
boundary-layer theory is unsatisfactory on two counts. 

First, Fernandez used the interfacial tensIon ;‘ as ;t 
fitting factor. The best value for the growth data was 
53mJ/m’, 21 times the presently accepted value of 21) 
+2mJ/m’ given by Lindenmeyer [II]. Second. if a 
typical value of AT of 0.3 K is substituted in equation 
(4). the radius of curvature R. of the tip is found to be 

20 x IO-’ em, implying a tip Reynolds number of about 

3 x 10e3. Although the theoretical value of the crystal 

tip radius is small, the value agrees with that calculated 
by Fernandez [4]. Also, although experimental deter- 

mination of the tip radius is extremely difficult. photo- 
graphs taken by Nakamura [16] suggest the experi- 
mental and theoretical values have the same order of 
magnitude. The ratio of the momentum boundary-layer 

thickness 6,. to the radius of curvature R. is approxi- 
mately 2!Re ‘,’ giving a ratio 6r.:R0 of about 36.5. This 

shows that the boundary-layer thickness iji, is much 
greater than the tip radius of curvature, suggesting that 
the assumptions of the first-order boundary-layer 

theory used above are not permissible. Comparable cal- 
culations, Deans [I], give a thermal film thickness ratio 
&/RO of about 1 I and a diffusion film thickness ii,.,Ro 

of about 2.3. 
This suggested that the boundary-layer approach 

should be abandoned and that creeping flow should be 

considered because of the low tip Reynolds numbers 
involved in the crystal growth. 

4.2 Creeping ,pollt 
Creeping flow round bluff bodies presents problems 

ofgreat mathematical complexity, Batchelor [ 121. The 

overall shape of the body has a strong influence on the 
local flow pattern at the front stagnation point even for 
a given radius of curvature. For this reason, the dimen- 

sionless stream function $’ = $/v for creeping flow 
about a parabolic cylinder expressed as a function of 

parabolic co-ordinates < and ff was used in conjunction 
with the numerical solutions of the Navier-Stokes 
equation by Davis [13] and Dennis and Walsh 1141. 

This implies, 

$’ = ,42<(q-Re’:2) with .4, = 0267 (6) 

and the parabolic co-ordinates are related to the 
Cartesian co-ordinates, centred on the focus of the 
crystal parabola as shown in Fig. (5), by the expressions 

The two-dimensional equation of heat transfer for the 
fluid near the surface of the crystal is given in Cartesian 
coordinates by, 

and when the velocity components given by equation 
(6) are inserted, equation (7) written in parabolic co- 
ordinates reduces to, 

where pl’ = (q-Rr”‘). At the crystal tip < = 0. If we 
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assume conduction along the streamlines to be much 

less than conduction across them, 

c?=T a=T 

619 

where ps is the density of the salt solution, giving 

equation (8) reduces to, 

which can be integrated with boundary conditions 
T = T at r)’ = 0 and T = T, at r~’ = cc to give, 

e-(&s’“/3) dq’. (10) 

The corresponding temperature gradient at the surface 
is given by 

Using the binomial theorem, equation (17) can be 
solved for the interfacial salt concentration as 

If the temperature driving force in equation (13) is 
modified to allow for the effect of salt depressing 
the melting point so that [AT - (/l/R)] becomes 

[AT-Iw--(p/R)] and if q is eliminated from the 
resultant equation and equation (18) then the rate of 
growth of the ice crystal is given by, 

or in Cartesian co-ordinates, at the tip (X = -R/2, 

y = 0; 5 = 0, r) = Re”=) 

8T 1 3 A,Pr ‘I3 
x = g (Re)“’ m 3 

! i 
(Ti- T,). (12) 

The crystal growth rate is related to the heat transfer 
into the flow at the tip by the equation 

k. /aT\ 
v=“ 2 

PiL ax L ) 

Vi- To) 

which may be rewritten in the form 

x &CAT-(B/R)1 (13) 

L 

where, as in equation (3) allowance is made for the 

effect of curvature of the crystal tip. 

Optimizing the growth rate with respect to R gives 

(14) 

giving the form v cc V1’2AT3/2. 

When the ice crystals grow in a flowing stream of 
brine the salt concentration which tends to build up at 

the crystal tip must diffuse away from the ice surface. 
The mass fraction gradient -at the crystal 

obtained by replacing the Prandtl number 
equation (12) by the Schmidt number (SC) or 

(W- KJ. (15) 

A salt balance at the crystal tip gives, [5] 

p8Dg= vpiw 

is then 
(Pr) in 

(16) 

1’ 

’ VR,, i-1 I’= C,[AT, -(B/R)] 
L 

(19) 

When the equation is optimized for maximum growth 

rate with respect to R it becomes 

x (!g)“‘(Sgq (20) 

Thus equation (20) is the final equation for the A-axis 

growth of an ice crystal with the transfer of heat and 
diffusion of salt away from the tip into the creeping 
brine. 

This theory depends on the numerically determined 
coefficient A, in the velocity distribution expression 
given by equation (6). To the extent that this constant 
has no simple analytical source the theory is unsatis- 
factory. Consequently, a second theory which also 

avoids the unsatisfactory aspects of the forward stagna- 
tion point laminar boundary-layer theory was deve- 
loped and is outlined below. 

4.3 Ice conduction model 

In this theory it is assumed that the heat generated 
at the growth front is conducted along the crystal and 
then removed by forced convection, at right angles to 
the growth direction from the large flat faces of the 

crystal. This model is made physically plausible by the 
fact that the thermal conductivity of ice is four times 
that of water. 

Consider first the growth of the ice crystal in a 
flowing stream of pure water. The crystal is assumed 
to be in the form of a parabolic cylinder, as shown 
in Fig. 5, of thickness 2t at distance x from the origin 
which is now taken at the front stagnation point, rather 
than at the focus as before. Because the C-axis growth 
rate of ice crystals is much less than the A-axis growth 
rate, it is assumed that the crystal is thin with the radius 
of curvature R of the front stagnation point so small 
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FIG. 5. Parabolic tip of ice crystal. 

Using equation (21) 

’ k; e,, 
DZ-.. - - 

! 1 PiL. A3 

i.e. 

that the temperature can be taken as uniform across 
each section of the crystal, i.e. 

3T ZT 

2y3i‘ 
where 

~~~=(~o-T,)=(T,-T,,)-(B/R)=AT-(P/R). (30) 
The equation of the crystal surface is of the form, 

t2=4t?.u 
If this is optimized with respect to R, 

(21) 

where the constant a = +R. Thus, 

t = J(2Rx). (22) giving once again L’ ‘;c V1”AT3”. 

Now the heat convected from the surface of a flat For the ice/water system A3 2 1OOR and this value 

plate with temperature T,(x) varying with distance x together with the rapid decrease in the values of the 

from the leading edge is given by { 151 coefficients suggest that an estimation of the distance 

4 = -0.66~(p,)l:3(Re,)‘:2 

.x1 over which conduction in the ice crystal takes place 
can be obtained using only the first two terms of the 
series expansion of equation (27) with Qi = 0 giving 

.Y{ = A3/&, 

and 
By writing a heat balance on the element of the thin 
parabola shown in Fig. 5, (32) 

For the ice/water system, this implies x,/R r 100 and 
withR=20xlO-6cm,x, ~20xlO-~cm. 

Combining equations (16) and (17) Allowing for diffusion of the salt into the creeping 
flow around the tip in the same manner as for the 

A 

(25) previous model the rate of growth of the ice crystal is 
given by 

where 

0; = (T-T,), 

and 

The integral equation (18) was solved by assuming, which when optimized for maximum growth rate gives, 

oli = 8jo+aiXiU2X2+U3X3+... 

in which case, 

A3(a, + 6azx -t 1 5a3xZ +. . .) 

= - [BiO+~u~ B(% 5)X -@a&@, 5)X”]. 

By equating coefficients, which is similar in form to equations (5) and (20) and 

;= I-a,$+a 

is the final expression for the A-axis growth of an ice 
crystal with heat transfer along the crystal away from 

10 
z[tl -u3[;r (27) 

the tip and then through the boundary layer on the 
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where 

r 1 = 1: a2 = (~)~(~, 5,: a:, = t&i-, &a($. 4,/J@, $1 128) 

and &,q) is the Beta function. The crystal growth 
rate u is related to the heat transferred away from 
the tip by the equation 



New theories of the A-axis growth of ice crystals 621 

flat faces into the main brine stream and with diffusion 
of the salt away from the tip into the creeping brine. 

The ice conduction model implies that the ice crystal 
tem~rature decreases from the tip and means that the 
ice surface temperature away from the tip is not at the 
local equilibrium temperature. While this conflicts with 
most existing theories it is thought to be reasonable 
that, although the tip may be at the local ~uilibrium 
freezing temperature other parts of the crystal might be 
sub-cooled. 

In practice, it is possible that both the creeping flow 
and ice conduction models would operate simul- 
taneously. In this event, the tem~rature distribution 
through the crystal and around the tip should alter, 
thereby reducing the effect of each mechanism and 
probably giving a growth rate comparable to that 
obtained by either mechanism operating alone. 

5. COMPARISON OF THEORY AND EXPERIMENT 

For pure water, both the creeping flow theory 
summarized by equation (14) and the ice conduction 
theory summarized by equation (3 1) imply a growth law 
which satisfies equation (2) the constant of propor- 
tionality for creeping flow theory is 0.74 times and for 
the ice conduction theory 0.68 times the value given 
by the simple stagnation flow boundary-layer theory of 
equation (3). 

As shown in Fig. 2(c) the experimental results agree 
much better with either model than with the boundary- 
layer mode1 even when a reasonable value of ‘J = 22 
mJ/m’ is used whilst removing the anomaly of using 
boundary-layer theory at very low front stagnation 
point Reynolds numbers. Consequently, for pure water 
either model seems to provide a more satisfactory 
theory of A-axis growth than the boundary-layer 
model. 

When diffusion of the salt from the ice tip in 
creeping flow is added to the models resulting in 
equations (20) and (34), the agreement between theory 
and experiment is less good. Comparison between 
Barduhn’s theory equation (3), the new theories equa- 
tions (20) and (34) and theex~rimental growth rates for 
a fixed sub-cooling of l-OK and a fixed stream velocity 
of 5cm/s is made in Fig. 6. None of the theories 
predict the maximum in the ice growth rate when y is 
taken to be constant at 22 mJ/m2 and, with increase in 
salt concentration all theories show a continuous fall in 
growth rate, although beyond the maximum the rate of 
this fall is lower than that observed experimentally. The 
later models show some improvement over their 
predecessor, largely because of better agreement with 
pure water. However, when y varies with concentra- 
tion according to the measurement of Wood [16], 
implying a slight minimum in y at 05 per cent concen- 
tration, a maximum in the growth rate/concentration 
curve at about the measured con~ntration of 05 per 
cent is observed. As Fig. 6 shows, this theoretical 
maximum is much less than the measured maximum in 
the ice growth rate curve. However, even this partial 

explanation of the growth rate maximum, coincident as 
it is with the interfacial tension minimum at the same 

I I I I I I 
Sub cooling I.OK 

I5 Main Stream velocity 5cm/s 

I 

(y values from [15] ) 
I I I I I I I 

0 
J 

I % 2% 3% 4% 5% 6% 

Concentration, % wt 

FIG. 6. Comparison of experimental growth rates, ice 
conduction theory and laminar boundary-layer theory. 

concentration, must be viewed with suspicion because 
no satisfactory physical interpretation has been given 
of Wood’s data. 

6. CONCLUSIONS 

1. Theexperimental results for A-axis growth rate for 
pure water and for brine solutions with sub-cooling 
greater than about @4K are in reasonable agreement 
with previously published data. 

2. The theoretical work outlined here suggests that 
this growth rate of ice in pure water is controlled by 
heat transfer, either from the crystal tip with creeping 
flow or by heat transfer from the flat surfaces of the ice 
crystal. The new theories predict v cc Y1!‘AT3”, as 
found experimentally, but remove the anomalies of 
front stagnation point boundary layer and enable a 
more realistic value of y = 22 mJ/m’ to be used. 

3. The new heat-transfer theories, when combined 
with a salt diffusion allowance for brine concentration, 
also gives an improved estimate of growth rates in 
saline solutions, but the experimental effect of salt 
concentration is not explained in detail unless a 
stronger minimum is possible in the Y/concentration 
curve than hitherto found. 
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